
Beyond BBB:
Practical Alternatives to Posterior Approximation

in Bayesian Neural Networks

Tomasz Kuśmierczyk

February 18, 2025

Tomasz Kuśmierczyk Practical Alternatives to BBB February 18, 2025 1 / 23

Bayesian Learning in Neural Networks

Model Parameters as Random Variables:

In a neural network (NN), we have weight parameters
θ = {w1,w2, . . . ,wm} (possibly millions).

Bayesian approach: place a prior on θ and condition on data D to get
the posterior p(θ | D).

Posterior following Bayes rule:

p(θ | D) ∝ p(D | θ) p(θ)

Predictive distribution integrates over θ:

p(y∗ | x∗,D) =

∫
p(y∗ | x∗, θ) p(θ | D) dθ.

Tomasz Kuśmierczyk Practical Alternatives to BBB February 18, 2025 2 / 23

Bayesian Neural Networks: Quick Recap

In practice, exact posterior inference for modern deep networks is intractable.

Aim: Approximate p(θ | D) to quantify predictive uncertainty.

Common approximations:

Variational Inference (including BBB).
Stochastic Weight Averaging Gaussian (SWAG).
Laplace Approximation.
MCMC-based methods, . . .

Tomasz Kuśmierczyk Practical Alternatives to BBB February 18, 2025 3 / 23

Bayesian vs MAP

L(θ | D) = CE (D|θ) + weight-decay(
1

2σ2
)

Say D = {(x , y)}, p(y | θ, x) = Cat(nn(x)) and p(θ) = N (θ|0, σ2I)
Then:

L(θ | D) = − log p(D | θ)− log p(θ)

= − log (p(D | θ) p(θ))

vs.

log p(θ | D) ∝ log(p(D | θ) p(θ))

−→ standard optimization with reqularization finds max of the posterior:
θMAP = argmaxp(θ|D)

Tomasz Kuśmierczyk Practical Alternatives to BBB February 18, 2025 4 / 23

Bayesian vs MAP

L(θ | D) = CE (D|θ) + weight-decay(
1

2σ2
)

Say D = {(x , y)}, p(y | θ, x) = Cat(nn(x)) and p(θ) = N (θ|0, σ2I)
Then:

L(θ | D) = − log p(D | θ)− log p(θ)

= − log (p(D | θ) p(θ))

vs.

log p(θ | D) ∝ log(p(D | θ) p(θ))

−→ standard optimization with reqularization finds max of the posterior:
θMAP = argmaxp(θ|D)

Tomasz Kuśmierczyk Practical Alternatives to BBB February 18, 2025 4 / 23

Bayesian vs MAP

L(θ | D) = CE (D|θ) + weight-decay(
1

2σ2
)

Say D = {(x , y)}, p(y | θ, x) = Cat(nn(x)) and p(θ) = N (θ|0, σ2I)
Then:

L(θ | D) = − log p(D | θ)− log p(θ)

= − log (p(D | θ) p(θ))

vs.

log p(θ | D) ∝ log(p(D | θ) p(θ))

−→ standard optimization with reqularization finds max of the posterior:
θMAP = argmaxp(θ|D)

Tomasz Kuśmierczyk Practical Alternatives to BBB February 18, 2025 4 / 23

Approximate methods: general framework

Goal: Approximate p(θ | D) ≈ N (µ̂, Σ̂)
Steps:

Gradient-based optimization (with specific scheduler and/or
regularization)

Postprocessing to get µ̂, Σ̂

Tomasz Kuśmierczyk Practical Alternatives to BBB February 18, 2025 5 / 23

Challenges in Approximate Posterior Learning

Approximation quality: Trade-off between computational feasibility and
fidelity to the true posterior.

Local minima and multi-modal posteriors: Loss surfaces can be highly
non-convex.

Implementation complexities:

Additional overhead for sampling or for second-order information (e.g.,
Hessians).

Tomasz Kuśmierczyk Practical Alternatives to BBB February 18, 2025 6 / 23

SWA: High-Level Intuition

Neural networks often converge to ”good” solutions near the end of
training.

By saving multiple snapshots of these parameters, we empirically
estimate a distribution.

Source: https://pytorch.org/blog/stochastic-weight-averaging-in-pytorch/

Tomasz Kuśmierczyk Practical Alternatives to BBB February 18, 2025 7 / 23

https://pytorch.org/blog/stochastic-weight-averaging-in-pytorch/

SWAG: Steps

1 Train your model as usual
2 After N epochs fix your optimization scheduler and periodically

save/collect model parameters.

Compute running mean of these parameters to get µSWAG.
Compute second moment or low-rank approximations to get covariance.

3 Form a Gaussian N (µ,Σ) to approximate posterior.

4 Sample from N (µ,Σ) for predictive uncertainties.

Tomasz Kuśmierczyk Practical Alternatives to BBB February 18, 2025 8 / 23

SWAG: Key Equations

Posterior Approximation:

p(θ|D) = N
(
µ̂,

1

2
(diag(v̂) +

1

K − 1
D D⊤︸ ︷︷ ︸
low-rank

)
)
,

where

µ̂ =
1

T

T∑
i=1

θi ,

v̂ =
1

T

T∑
i=1

θ2i − µ̂2,

Σlow-rank ≈
1

K − 1

K∑
i

DiD
T
i , Di = θi − µ̂

D is a queue of last K deviations from the mean −→
Σlow-rank is estimated from the last K sets of parameters and has rank K

Tomasz Kuśmierczyk Practical Alternatives to BBB February 18, 2025 9 / 23

SWAG: Running Means and Variances

def collect_model(self, base_model):
...
update SWAG means & sq. means
for (module, name), base_param in zip(self.params, base_model_params):

mean_ = module.__getattr__(f"{name}_mean")
sq_mean_ = module.__getattr__(f"{name}_sq_mean")

mean_ = mean_*self.n_models.item()/(self.n_models.item()+1.0) \
+ base_param.data/(self.n_models.item()+1.0)

sq_mean_ = sq_mean_*self.n_models.item()/(self.n_models.item()+1.0)\
+ base_param.data**2/(self.n_models.item()+1.0)

module.__setattr__(f"{name}_mean", mean_)
module.__setattr__(f"{name}_sq_mean", sq_mean_)

self.n_models.add_(1)

Tomasz Kuśmierczyk Practical Alternatives to BBB February 18, 2025 10 / 23

SWAG: Running Covariance

square root of covariance matrix
if self.no_cov_mat is False:

cov_mat_sqrt = module.__getattr__("%s_cov_mat_sqrt" % name)

block covariance matrices, store deviation from current mean
dev = (base_param.data - mean).view(-1, 1)
cov_mat_sqrt = torch.cat((cov_mat_sqrt, dev.view(-1, 1).t()), dim=0)

remove first column if we have stored too many models
if (self.n_models.item() + 1) > self.max_num_models:

cov_mat_sqrt = cov_mat_sqrt[1:, :]
module.__setattr__("%s_cov_mat_sqrt" % name, cov_mat_sqrt)

Tomasz Kuśmierczyk Practical Alternatives to BBB February 18, 2025 11 / 23

SWAG: Sampling

θ̃ = µ̂+ 1√
2
diag(

√
v̂) ϵ1 +

1√
2(K−1)

D ϵ2,

with ϵ1 ∼ N (0, Id), ϵ2 ∼ N (0, IK).

Tomasz Kuśmierczyk Practical Alternatives to BBB February 18, 2025 12 / 23

Multi-SWAG

Source: https://arxiv.org/pdf/2002.08791

Tomasz Kuśmierczyk Practical Alternatives to BBB February 18, 2025 13 / 23

https://arxiv.org/pdf/2002.08791

Laplace Approximation: Overview

Idea: Approximates p(θ | D) by a Gaussian centered at the MAP solution:

p(θ | D) ≈ N
(
θMAP, H

−1
)
,

where H is (an approximation to) the Hessian of the negative log posterior
at θMAP.

H is set to ∇2
θ[− log p(D | θ)− log p(θ)]

∣∣
θMAP

.

Variants: Diagonal, Full, Kronecker-factored (kron), Low-rank
approximations, etc.

Tomasz Kuśmierczyk Practical Alternatives to BBB February 18, 2025 14 / 23

Laplace Approximation: Steps

Idea:

Perform standard training to get θMAP ≈ argmax p(θ | D).

Approx. the local posterior by a Gaussian with covariance from the
Hessian or a variant.

Steps:

1 Train model to get θMAP.

2 Compute Hessian approximation H ≈ ∇2
θL(θMAP).

3 Invert (approximately) Σ ≈ −H−1.

4 Sample θ from N (θMAP,Σ) or do linearized predictive (helps a lot
with GGN!).

Tomasz Kuśmierczyk Practical Alternatives to BBB February 18, 2025 15 / 23

Laplace Redux

la = Laplace(model, # pre-trained model
’classification’, # likelihood -> CE
prior_precision=1., # prior params
hessian_structure=’kron’ # covariance approximation
subset_of_weights=’all’, # on which weights
)

la.fit(train_dataloader)

Tomasz Kuśmierczyk Practical Alternatives to BBB February 18, 2025 16 / 23

Laplace: Collecting Curvature Information

Excerpt from baselaplace.py where curvature is accumulated:

class BaseLaplace:
def __init__(self, model, likelihood, sigma_noise=1., prior_precision=

None, ...):
self.model = model
self.likelihood = likelihood
Initialize Hessian or curvature approx...

def fit(self, train_loader):
For each batch, gather curvature information (e.g. GGN, Hessian):
for batch in train_loader:

self.model.zero_grad()
loss_batch, H_batch, f = self._curv_closure(batch, N)
self.loss += loss_batch
self.H += H_batch

self.n_data += N

Note: curv closure is the function that computes Hessian approximations for

each batch (or the GGN, etc.).

Tomasz Kuśmierczyk Practical Alternatives to BBB February 18, 2025 17 / 23

Generalized Gauss-Newton (GGN) Approximation

GGN Approximation (Generalized Gauss-Newton): replaces the exact
Hessian with

HGGN ≈ J⊤
(
∇2
f ℓ
(
f ; y

))
J,

where

J is the Jacobian of the network outputs w.r.t. parameters,
∇2
f ℓ is the Hessian of the neg-likelihood w.r.t. the model outputs (often

simpler to compute).

Key Advantage: avoids computing the second derivatives of each network
layer directly, using backprop for Jacobian-vector products instead.

Tomasz Kuśmierczyk Practical Alternatives to BBB February 18, 2025 18 / 23

Kronecker Factorization of the Hessian

Motivation: Computing and storing the full Hessian for a large network is
infeasible (costly in both memory and computation).

Key Idea: Approximate the layer-wise Hessian as a Kronecker product of
smaller matrices. For a layer with parameter shape (dout × din), the Hessian
can be approximated as:

H ≈ A ⊗ B,

where A ∈ Rdout×dout and B ∈ Rdin×din capture output- and input-side
curvature, respectively.

Why This Helps:

Inversion of H is reduced to inverting A and B individually:(
A ⊗ B

)−1
= A−1 ⊗ B−1.

Memory Savings: Instead of storing a full (doutdin)× (doutdin) matrix,
only two much smaller (dout × dout) and (din × din) matrices are
needed.
Computation Benefits: Determinants and matrix products factorize
accordingly, improving efficiency for posterior covariance computations.

Tomasz Kuśmierczyk Practical Alternatives to BBB February 18, 2025 19 / 23

Laplace Approximation: Model Linearization

p(θ|D) ≈ q(θ) = N
(
θMAP, H

−1
)
.

Source: https://arxiv.org/pdf/2008.08400

Tomasz Kuśmierczyk Practical Alternatives to BBB February 18, 2025 20 / 23

https://arxiv.org/pdf/2008.08400

Priors

With Gaussian posteriors Gaussian priors are typically used

In SWAG just as weight decay during optimization

In Laplace as weight decay during optimization and when computing
Hessian

Can be fit by optimizing Marginal Log-likelihood

Tomasz Kuśmierczyk Practical Alternatives to BBB February 18, 2025 21 / 23

SWAG vs. Laplace

SWAG

Snapshots approach: Takes advantage of final training fluctuations.

Pros: Easy to implement, minimal overhead, good in practice if final
epochs explore parameter space sufficiently.

Cons: Might not capture full curvature; depends on snapshot
frequency/phase.

Laplace

Hessian-based approach: Local Gaussian near θMAP.

Pros: Classic, interpretable in terms of second-order expansions, can
incorporate advanced factorization.

Cons: Hessian computations can be costly for large nets unless
further approximations (diag/K-FAC/low-rank).

Tomasz Kuśmierczyk Practical Alternatives to BBB February 18, 2025 22 / 23

References

G. Maddox et al. (2019): Simple and Principled Bayesian Inference
with SWAG. A. Wilson et. al (2023): Bayesian Deep Learning and a
Probabilistic Perspective of Generalization

D. MacKay (1992): Bayesian Methods for Adaptive Models.

A. Immer et al. (2021): Improving predictions of Bayesian neural nets
via local linearization

E. Daxberger et al. (2021): Laplace Redux – Effortless Bayesian Deep
Learning

A. Ritter et al. (2018): Scalable Laplace Approximations for Neural
Networks (K-FAC).

Tomasz Kuśmierczyk Practical Alternatives to BBB February 18, 2025 23 / 23

	Introduction & Bayesian Basics
	SWAG Approximation
	Laplace Approximation
	Discussion and Conclusions

