Beyond BBB:

Practical Alternatives to Posterior Approximation
in Bayesian Neural Networks

Tomasz Kusmierczyk

February 18, 2025

. " ,* This research is part of the project No. 2022/45/F/ST6/02969 co-funded by the
**x Wy, National Science Centre and the European Union Framework Progromme for Research
My % N group of machine e 0g1

* *
B ot ¢ = POLONEZ BIS N/ and Innovation Horizon 2020 under the Marie Sklodowska-Curie grant agreement No.
* * 3 A 945339, For the purpose of Open Access, the author has applied o CC-BY public
** s learning research  copyright licence to any Author Accepted Manuscript (AAM) version arising from this

submission;

Practical Alternatives to BBB February 18,

Tomasz Kusmierczyk



Bayesian Learning in Neural Networks

Model Parameters as Random Variables:

@ In a neural network (NN), we have weight parameters
0 = {wi,wa,...,wn} (possibly millions).

@ Bayesian approach: place a prior on 6 and condition on data D to get
the posterior p(6 | D).

@ Posterior following Bayes rule:

p(0] D) < p(D | 0) p(6)

@ Predictive distribution integrates over 6:

Py’ 1%.0) = [ ply" [x",6)p(6 | D) db.

Tomasz Kusmierczyk Practical Alternatives to BBB February 18, 2025



Bayesian Neural Networks: Quick Recap

@ In practice, exact posterior inference for modern deep networks is intractable.
@ Aim: Approximate p(6 | D) to quantify predictive uncertainty.
@ Common approximations:

Variational Inference (including BBB).

Stochastic Weight Averaging Gaussian (SWAG).
Laplace Approximation.

MCMC-based methods, ...

Tomasz Kusmierczyk Practical Alternatives to BBB February 18, 2025



Bayesian vs MAP

£(0| D) = CE(D|) + weight-decay(ziz)
(o)

Tomasz Kusmierczyk Practical Alternatives to BBB February 18, 2025



Bayesian vs MAP

£(0| D) = CE(D|) + weight-decay(ziz)
(o)

Say D = {(x,y)}, p(y | 6,x) = Cat(nn(x)) and p(d) = N'(6]0,0°/)
Then:

L(0| D) = —logp(D | 0) — log p(¥)
= —log (p(D | 0) p(9))

Tomasz Kusmierczyk Practical Alternatives to BBB February 18, 2025



Bayesian vs MAP

£(0| D) = CE(D|) + weight-decay(%z)
(o)

Say D = {(x,y)}, p(y | 6,x) = Cat(nn(x)) and p(d) = N'(6]0,0°/)
Then:

L(0| D) = —logp(D | 0) — log p(¥)
= —log (p(D | 0) p(9))

VS.

log p(0 | D) o log(p(D | 0) p(6))

— standard optimization with reqularization finds max of the posterior:
Omap = argmaxp(6|D)

Tomasz Kusmierczyk Practical Alternatives to BBB February 18, 2025



Approximate methods: general framework

Goal: Approximate p(f | D) ~ N(fi, %)
Steps:
o Gradient-based optimization (with specific scheduler and/or
regularization)

A

@ Postprocessing to get i, X

Tomasz Kusmierczyk Practical Alternatives to BBB February 18, 2025



Challenges in Approximate Posterior Learning

@ Approximation quality: Trade-off between computational feasibility and
fidelity to the true posterior.

@ Local minima and multi-modal posteriors: Loss surfaces can be highly
non-convex.

@ Implementation complexities:

e Additional overhead for sampling or for second-order information (e.g.,
Hessians).

Tomasz Kusmierczyk Practical Alternatives to BBB February 18, 2025



SWA: High-Level Intuition

@ Neural networks often converge to "good” solutions near the end of
training.

@ By saving multiple snapshots of these parameters, we empirically
estimate a distribution.

Learning Rate

75% training

Update BN

Average
DNN weights @ ®

Epoch

Source: https://pytorch.org/blog/stochastic-weight-averaging-in-pytorch/

Tomasz Kusmierczyk Practical Alternatives to BBB February 18, 2025


https://pytorch.org/blog/stochastic-weight-averaging-in-pytorch/

SWAG: Steps

@ Train your model as usual

@ After N epochs fix your optimization scheduler and periodically
save/collect model parameters.

e Compute running mean of these parameters to get uswag-
o Compute second moment or low-rank approximations to get covariance.

© Form a Gaussian N'(u, L) to approximate posterior.
@ Sample from N(u,X) for predictive uncertainties.

Tomasz Kusmierczyk Practical Alternatives to BBB February 18, 2025 8/23



SWAG: Key Equations

Posterior Approximation:

1

O A
p(8|D) = N (p, E(dlag(v) TR

DD)),
~——
low-rank

where

1 T
ﬁ:7zei7
i=1
~o_ 1 L 2 ~2
V_?;oi I
1 K
ZIow—rank ~ m Z DiD,’Ta Di = 9i - ﬂ

D is a queue of last K deviations from the mean —
Y low-rank IS estimated from the last K sets of parameters and has rank K

Tomasz Kusmierczyk Practical Alternatives to BBB February 18, 2025



SWAG: Running Means and Variances

def collect_model(self, base_model):

# update SWAG means & sq. means
for (module, name), base_param in zip(self.params, base_model_params):

mean_ = module.__getattr__(f"{name}_mean")
sqg_mean_ = module.__getattr__(f"{name}_sqg_mean")
mean_ = mean_*self.n_models.item()/(self.n_models.item()+1.0) \

+ base_param.data/(self.n_models.item()+1.0)
sq_mean_ = sq_mean_xself.n_models.item()/(self.n_models.item()+1.0)\
+ base_param.data**2/(self.n_models.item()+1.0)

module.__setattr__(f"{name}_mean”, mean_)
module.__setattr__(f"{name}_sqg_mean", sq_mean_)
self.n_models.add_(1)

Tomasz Kusmierczyk Practical Alternatives to BBB February 18, 2025 10/23



SWAG: Running Covariance

# square root of covariance matrix
if self.no_cov_mat is False:
cov_mat_sqrt = module.__getattr__("%s_cov_mat_sqrt” % name)

# block covariance matrices, store deviation from current mean
dev = (base_param.data - mean).view(-1, 1)
cov_mat_sqrt = torch.cat((cov_mat_sqrt, dev.view(-1, 1).t()), dim=0)

# remove first column if we have stored too many models

if (self.n_models.item() + 1) > self.max_num_models:
cov_mat_sqrt = cov_mat_sqrt[1:, :]

module.__setattr__("%s_cov_mat_sqrt” % name, cov_mat_sqrt)

Tomasz Kusmierczyk Practical Alternatives to BBB February 18, 2025 11/23



SWAG: Sampling

é = /’l =+ %dlag(ﬁ) €1 + \/ﬁl) €2,
with €1 ~ N(O, /d), €2 ~~ N(O, IK).

Tomasz Kusmierczyk Practical Alternatives to BBB February 18, 2025 12/23



0 Multi-SWAG

O Deep Ensembles o VI

p(w|D)

Source: https://arxiv.org/pdf/2002.08791

February 18, 20:

4]
o
o0
o
S
0
4}
=
]
©
=
<
o
=
<
™
2
5
(5}
o
[N

Tomasz Kusmierczyk



https://arxiv.org/pdf/2002.08791

Laplace Approximation: Overview

@ ldea: Approximates p(6 | D) by a Gaussian centered at the MAP solution:
p(9 | D) ~ N(QMAP, Hil),

where H is (an approximation to) the Hessian of the negative log posterior
at Opap.
o Hisset to V3[—logp(D | 6) — log p(9)]|0MAP.

@ Variants: Diagonal, Full, Kronecker-factored (kron), Low-rank
approximations, etc.

Tomasz Kusmierczyk Practical Alternatives to BBB February 18, 2025 14 /23



Laplace Approximation: Steps

Idea:
@ Perform standard training to get Oyap =~ arg max p(6 | D).
@ Approx. the local posterior by a Gaussian with covariance from the
Hessian or a variant.
Steps:
Train model to get Oyiap.
Compute Hessian approximation H = Vgﬁ(&MAP).
Invert (approximately) ¥ ~ —H™*.

Sample 6 from N (Oyiap, X) or do linearized predictive (helps a lot
with GGN!).

Tomasz Kusmierczyk Practical Alternatives to BBB February 18, 2025 15/23



Laplace Redux

la = Laplace(model, # pre-trained model
"classification’, # likelihood -> CE
prior_precision=1., # prior params
hessian_structure="kron’ # covariance approximation
subset_of_weights="all’, # on which weights

)
la.fit(train_dataloader)

Tomasz Kusmierczyk Practical Alternatives to BBB February 18, 2025



Laplace: Collecting Curvature Information

Excerpt from baselaplace.py where curvature is accumulated:

class Baselaplace:
def __init__(self, model, likelihood, sigma_noise=1., prior_precision=
None, ...):
self.model = model
self.likelihood = likelihood
# Initialize Hessian or curvature approx...

def fit(self, train_loader):
# For each batch, gather curvature information (e.g. GGN, Hessian):
for batch in train_loader:
self.model.zero_grad()
loss_batch, H_batch, f = self._curv_closure(batch, N)
self.loss += loss_batch
self.H += H_batch
self.n_data += N

Note: _curv_closure is the function that computes Hessian approximations for
each batch (or the GGN, etc.).

Tomasz Kusmierczyk Practical Alternatives to BBB February 18, 2025 17/23



Generalized Gauss-Newton (GGN) Approximation

© GGN Approximation (Generalized Gauss-Newton): replaces the exact

Hessian with
Hoon =~ JT (VEL(f; y)) J,

where

e J is the Jacobian of the network outputs w.r.t. parameters,
o V?/is the Hessian of the neg-likelihood w.r.t. the model outputs (often
simpler to compute).

@ Key Advantage: avoids computing the second derivatives of each network
layer directly, using backprop for Jacobian-vector products instead.

Tomasz Kusmierczyk Practical Alternatives to BBB February 18, 2025



Kronecker Factorization of the Hessian

@ Motivation: Computing and storing the full Hessian for a large network is
infeasible (costly in both memory and computation).

@ Key ldea: Approximate the layer-wise Hessian as a Kronecker product of
smaller matrices. For a layer with parameter shape (dout X din), the Hessian
can be approximated as:

H=~ A® B,
where A € R%utXdout and B € R%n*%n capture output- and input-side
curvature, respectively.

@ Why This Helps:

o Inversion of H is reduced to inverting A and B individually:

(Ao B) " = Ale B

o Memory Savings: Instead of storing a full (doutthn) X (doutdin) matrix,
only two much smaller (dout X dout) and (din X din) matrices are
needed.

e Computation Benefits: Determinants and matrix products factorize
accordingly, improving efficiency for posterior covariance computations.

Tomasz Kusmierczyk Practical Alternatives to BBB February 18, 2025 19/23



Laplace Approximation: Model Linearization

p(0|D) ~ q(0) = N (Omap, H™Y).

BNN predictive (Eq. (9)) GLM predictive (Eq. (13))
pBNN(Y‘X D GGN  PgLwm y‘X D

Ja(6) y\f X, 0 de ~ A Ja(0) y|flm x,0))de

2 (x,0) = f(x,0") + ng(x.O)\gze (CEXS)

Source: https://arxiv.org/pdf/2008.08400

Tomasz Kusmierczyk Practical Alternatives to BBB February 18, 2025


https://arxiv.org/pdf/2008.08400

Priors

@ With Gaussian posteriors Gaussian priors are typically used

@ In SWAG just as weight decay during optimization

@ In Laplace as weight decay during optimization and when computing
Hessian

o Can be fit by optimizing Marginal Log-likelihood

Tomasz Kusmierczyk Practical Alternatives to BBB February 18, 2025 21/23



SWAG vs. Laplace

SWAG
@ Snapshots approach: Takes advantage of final training fluctuations.

@ Pros: Easy to implement, minimal overhead, good in practice if final
epochs explore parameter space sufficiently.

@ Cons: Might not capture full curvature; depends on snapshot
frequency/phase.

Laplace
@ Hessian-based approach: Local Gaussian near Oyap.

@ Pros: Classic, interpretable in terms of second-order expansions, can
incorporate advanced factorization.

@ Cons: Hessian computations can be costly for large nets unless
further approximations (diag/K-FAC/low-rank).

Tomasz Kusmierczyk Practical Alternatives to BBB February 18, 2025 22/23



References

e G. Maddox et al. (2019): Simple and Principled Bayesian Inference
with SWAG. A. Wilson et. al (2023): Bayesian Deep Learning and a
Probabilistic Perspective of Generalization

D. MacKay (1992): Bayesian Methods for Adaptive Models.

A. Immer et al. (2021): Improving predictions of Bayesian neural nets
via local linearization

E. Daxberger et al. (2021): Laplace Redux — Effortless Bayesian Deep
Learning

A. Ritter et al. (2018): Scalable Laplace Approximations for Neural
Networks (K-FAC).

Tomasz Kusmierczyk Practical Alternatives to BBB February 18, 2025 23/23



	Introduction & Bayesian Basics
	SWAG Approximation
	Laplace Approximation
	Discussion and Conclusions

