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Part 1

Part 1: Introduction to Bayesian methods
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Coin tossing example

Task: for a biased (=unfair) coin, find the probability of heads θ :

1. Observations D = {H,H,H,T ,H,H,T ,H,H,H,H,T}
2. Observations D = {H,H,H,T ,H,H,T ,H}
3. Observations D = {H,H,H,T}
4. Observations D = {T ,T}
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Maximum Likelihood Estimate

1. Specify model.

2. Select loss.

3. Find parameters minimizing loss (=maximizing data
likelihood).

Coin tossing example:

▶ Parameter: θ

▶ Option 1: MSE loss: L(D, θ) =
∑

y∈D(y − θ)2

▶ Option 2: Bernoulli negative log-likelihood:
L(D, θ) = −

∑
y∈D log p(y |θ) where p = Bernoulli pmf

▶ Solution: θ̂ = argminθL(D, θ)
=⇒ θ̂ = 0.75 for 1.,2.,3.
=⇒ θ̂ = 0.0 for 4.
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Few problems with MLE

▶ Overfitting with Small Sample Size: If we toss the coin a
very small number of times (e.g., once or twice), MLE can
give misleading results.

▶ Bias in Estimation with Limited Data: MLE is highly
sensitive to the sample size. With few observations, the
estimation can be heavily biased.

▶ Zero Probability Issue: If an outcome is not observed in the
sample, MLE assigns it a probability of zero.

▶ Doesn’t Account for Prior Knowledge: MLE only uses the
observed data and does not incorporate any prior knowledge
or beliefs.

▶ Variance in Estimates: The variance of the MLE estimate is
high for small sample sizes, leading to unstable predictions.

▶ Sensitivity to Outliers: Outliers or rare events can
disproportionately affect the MLE.
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Neural Network Classifier (likelihood=Bernoulli)
predicting p(y = 1|x ,D) = 1− p(y = 0|x ,D)
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MLE solution p(y |x ,D) for 1k data points

Based on: https://github.com/wiseodd/last_layer_laplace
accompanying: Kristiadi et al. ”Being bayesian, even just a bit, fixes overconfidence in relu networks.” ICML 2020.
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MLE solution p(y |x ,D) for 4 data points

Based on: https://github.com/wiseodd/last_layer_laplace
accompanying: Kristiadi et al. ”Being bayesian, even just a bit, fixes overconfidence in relu networks.” ICML 2020.
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Goal

We want ML models that:

▶ are uncertain about unseen things

▶ become more certain with more data
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MLE vs Bayes: Latent variable inference

▶ point-wise - find one value θ̂,
e.g., by minimizing loss = maximizing likelihood (MLE) /

maximum a posteriori (MAP): (((((((((((hhhhhhhhhhhθ̂ = argminθL(D, θ)
▶ distributional - find a posterior p(θ|D)

▶ we get uncertainty about θ (e.g., variance in addition to the
mean)
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MLE vs Bayesian (LLLA) solution

Based on: https://github.com/wiseodd/last_layer_laplace
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Bayes Theorem

Everything follows from two basic rules:

▶ Sum rule: p(A) =
∑

b p(A,B = b)

▶ Product rule: p(A,B) = p(B|A) · p(A) = p(A|B) · p(B)

Bayes’ Theorem:

p(A|B) = p(B|A) · p(A)
p(B)

=
p(B|A) · p(A)∑
a p(B,A = a)

=
p(B|A) · p(A)∑

a p(B|A = a)p(A = a)
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Basic Concepts of Bayesian Methods

p(A|B) = p(B|A) · p(A)
p(B)

Let’s rename A −→ θ, B −→ D:

p(θ|D) = p(D|θ) · p(θ)
p(D)

▶ Prior p(θ): Initial belief on parameters before seeing data

▶ Likelihood p(D|θ): Probability of data given parameters of
the model

▶ Posterior p(θ|D): Updated belief after seeing (more) data
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Bayes Theorem Example: Determining Stroke Type Based
on MRI Scan Intensity

▶ The MRI scan of a patient shows an intensity value of
y = 140 units (D = {140}).

▶ Ischemic Stroke (Ischemic): In an ischemic stroke, affected
brain areas may show lower signal intensity due to reduced
blood flow. Assume these intensity values follow a normal
distribution with a mean of 100 units and a standard deviation
of 20:
y ∼ N (100, 202)|θ=I .

▶ Hemorrhagic Stroke (Hemorrhagic): In a hemorrhagic stroke,
affected areas show higher signal intensity due to bleeding.
Assume these intensity values follow a normal distribution
with a mean of 180 units and a standard deviation of:
y ∼ N (180, 302)|θ=H .
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Bayes Theorem Example: likelihood

p(y |θ) = N (y |100, 202) · I[θ = I ] +N (y |180, 302) · I[θ = H]
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Bayes Theorem Example: priors

Prior Beliefs about Parameters:

▶ Ischemic Stroke (Ischemic): This is the most common type of
stroke, accounting for about 85% of all strokes (prior
probability = 0.85):
p(θ = I ) = 0.85

▶ Hemorrhagic Stroke (Hemorrhagic): Less common, these
strokes account for the remaining 15% of stroke cases (prior
probability = 0.15).
p(θ = H) = 0.15
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Bayes Theorem Example: solution

▶ Data: D = {140}
▶ Likelihood: N (y |100, 202)|θ=I , N (y |180, 302)|θ=H

▶ Priors: p(θ = I ) = 0.85, p(θ = H) = 0.15

▶ Computation:
▶ p(D|θ = I ) = N (140|100, 202) = 0.0027
▶ p(D|θ = H) = N (140|180, 302) = 0.0055
▶ p(D) = 0.0027 ∗ 0.85 + 0.15 ∗ 0.0055 =

0.002295 + 0.000825 = 0.00312
▶ p(θ = I |D) = 0.0027 ∗ 0.85/0.00312 = 0.736
▶ p(θ = H|D) = 0.15 ∗ 0.0055/0.00312 = 0.264
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Understanding priors: posteriors as priors

p(θ|D0) =
p(D0|θ) · p(θ)

p(D0)

p(θ|D1 ∪ D0) =
p(D1 ∪ D0|θ) · p(θ)

p(D1 ∪ D0)
=

=
p(D1|θ)p(D0|θ)p(θ)

p(D1)p(D0)
=

p(D1|θ)p(θ|D0)

p(D1)

p(θ|D1 ∪ D0) ←− p(θ|D0) ←− p(θ) = p(θ|∅)

18 / 64



Understanding priors: posteriors as priors

p(θ|D0) =
p(D0|θ) · p(θ)

p(D0)

p(θ|D1 ∪ D0) =
p(D1 ∪ D0|θ) · p(θ)

p(D1 ∪ D0)
=

=
p(D1|θ)p(D0|θ)p(θ)

p(D1)p(D0)
=

p(D1|θ)p(θ|D0)

p(D1)

p(θ|D1 ∪ D0) ←− p(θ|D0) ←− p(θ) = p(θ|∅)

18 / 64



Understanding priors: posteriors as priors

p(θ|D0) =
p(D0|θ) · p(θ)

p(D0)

p(θ|D1 ∪ D0) =
p(D1 ∪ D0|θ) · p(θ)

p(D1 ∪ D0)
=

=
p(D1|θ)p(D0|θ)p(θ)

p(D1)p(D0)
=

p(D1|θ)p(θ|D0)

p(D1)

p(θ|D1 ∪ D0) ←− p(θ|D0) ←− p(θ) = p(θ|∅)
18 / 64



Bayes Theorem Example: repeated measurement

Previous solution for D0 = {140}:
▶ p(θ = I |D) = 0.0027 ∗ 0.85/0.00312 = 0.736

▶ p(θ = H|D) = 0.15 ∗ 0.0055/0.00312 = 0.264

After additional measurement y = 160: D1 = {160};
D = D0 ∪ D1 = {140, 160}:
▶ p(D1|θ = I ) = N (160|100, 202) = 0.0002

▶ p(D1|θ = H) = N (160|180, 302) = 0.0106

▶ p(D) = 0.0002 ∗ 0.736 + 0.0106 ∗ 0.264 = 0.0029456

▶ p(θ = I |D) = 0.0002 ∗ 0.736/0.0029456 = 0.05

▶ p(θ = H|D) = 0.0106 ∗ 0.264/0.0029456 = 0.95
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Conjugate priors

▶ Problem: how to find p(θ|D)?
▶ For some pairs of prior+likelihood, the posterior takes the

same form as prior
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Conjugate priors: whiteboard example

Back to the coin-tossing example:
Let’s consider Beta-Bernoulli model:

▶ prior p(θ) = Beta(θ|α, β) = θα−1·(1−θ)β−1

B(α,β)

▶ likelihood
p(D|θ) =

∏
y∈D Bernoulli(y |θ) =

∏
y

(
θy · (1− θ)(1−y)

)
▶ example data: D = {T ,T}

Find p(θ|D):
1. Let’s start with p(θ|D) ∝ p(D|θ)p(θ)
2. . . .

3. https://homepage.divms.uiowa.edu/~mbognar/
applets/beta.html

4. Importance of priors: α = β = 1 vs α = β = 10
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Conjugate priors

Conjugate priors:
https://en.wikipedia.org/wiki/Conjugate_prior
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BNNs: Typical Practical Setting

▶ data D = {y}
(or D = {(x , y)} but x (e.g., features vector) is not modeled)

▶ parameters vector θ
▶ parameters steering a generative process
▶ a lower-dimensional representation (like in VAE)
▶ set of weights and biases in a NN

▶ likelihood p(D|θ) or p(y |θ, x)
▶ NN structure (layers, activations etc.) is part of the

likelihood
▶ iid: p(D|θ) =

∏
(x,y)∈D p(y |θ, x) (same as =

∏
i p(yi |θ, xi ))

▶ e.g. for the stroke example with D = {140, 160}:
p(D|θ = I ) = N (140|100, 202) · N (160|100, 202),
p(D|θ = H) = N (140|180, 302) · N (160|180, 302)

▶ prior p(θ)

▶ ultimate goal: find posterior predictive p(y |D) or p(y |D, x)
▶ intermediate goal: find posterior p(θ|D) ∝ p(D|θ)p(θ)
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The simplest BNN: linear regression with fixed noise
variance σ2 = 1.

▶ Likelihood of linear regression:
p(D|θ) =

∏
(x ,y)∈D p(y |x , θ)

p(y |x , θ) = N (y |θT · x , 1)
(i.e. y = θT x + ϵ, ϵ ∼ N (0, 1))

▶ Factorized Gaussian prior:
p(θ) = N (θ|0, I ) =

∏
d N (θd |0, 1)

▶ Computation: evidence (normalizer):
p(D) =

∫
p(D|θ)p(θ)dθ =∫

· · ·
∫ ∏

(x ,y)∈D p(y |x , θ1, . . . θN) ·
∏

d N (θd |0, 1)dθ1 . . . dθN

24 / 64



The simplest BNN: linear regression with fixed noise
variance σ2 = 1.

▶ Likelihood of linear regression:
p(D|θ) =

∏
(x ,y)∈D p(y |x , θ)

p(y |x , θ) = N (y |θT · x , 1)
(i.e. y = θT x + ϵ, ϵ ∼ N (0, 1))

▶ Factorized Gaussian prior:
p(θ) = N (θ|0, I ) =

∏
d N (θd |0, 1)

▶ Computation: evidence (normalizer):
p(D) =

∫
p(D|θ)p(θ)dθ =∫

· · ·
∫ ∏

(x ,y)∈D p(y |x , θ1, . . . θN) ·
∏

d N (θd |0, 1)dθ1 . . . dθN

24 / 64



The simplest BNN: linear regression with fixed noise
variance σ2 = 1.

▶ Likelihood of linear regression:
p(D|θ) =

∏
(x ,y)∈D p(y |x , θ)

p(y |x , θ) = N (y |θT · x , 1)
(i.e. y = θT x + ϵ, ϵ ∼ N (0, 1))

▶ Factorized Gaussian prior:
p(θ) = N (θ|0, I ) =

∏
d N (θd |0, 1)

▶ Computation: evidence (normalizer):
p(D) =

∫
p(D|θ)p(θ)dθ =∫

· · ·
∫ ∏

(x ,y)∈D p(y |x , θ1, . . . θN) ·
∏

d N (θd |0, 1)dθ1 . . . dθN

24 / 64



Predictions

▶ Point-wise:
p(y |x ,D)︸ ︷︷ ︸

predictive distribution

= p(y |θ̂, x)︸ ︷︷ ︸
likelihood

▶ Bayesian Model Averaging (average of all possible models
weighted by the posterior):

p(y |x ,D)︸ ︷︷ ︸
posterior predictive

=

∫
p(y |θ, x)︸ ︷︷ ︸
likelihood

p(θ|D)︸ ︷︷ ︸
posterior

dθ

Statistics of p(y |x ,D) can be obtained using the Monte-Carlo
estimates by two-step sampling:

▶ sample θ ∼ p(θ|D)
▶ for the fixed θ, sample y ∼ p(y |θ, x)

For example, Ep(y |x ,D)[y ] ≈ 1
Sθ

1
Sy

∑
θ∼p(θ|D)

∑
y∼p(y |θ,x) y
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Toy example

▶ point-wise - find θ̂,
e.g., maximizing likelihood (MLE) or maximum a posteriori
(MAP)

▶ distributional - find a posterior p(θ|D)

x

y

1
x

y
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Uncertainty: non-linear regression

http://mlg.eng.cam.ac.uk/yarin/blog_2248.html#demo

Figure: Multiple draws of a regression model.
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Side note: Types of uncertainty

Total uncertainty = epistemic uncertainty + aleatoric uncertainty
▶ aleatoric (via likelihood p(y |θ, x))

▶ by nature of the data
▶ for example: imprecise measurement
▶ irreducible
▶ can be captured with point inference

▶ epistemic (via posterior p(θ|D))
▶ uncertainty in a model
▶ for example: regression weights
▶ can be reduced with more data
▶ handled by, e.g., Bayesian inference
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Types of uncertainty continued: Uncertainty
decomposition 1

Following the law of the total variance, the total predictive
uncertainty can be expressed as:

Var(y | x ,D) = Ep(θ|D)[Var(y | θ, x)]︸ ︷︷ ︸
Aleatoric Uncertainty

+Varp(θ|D)[E(y | θ, x)]︸ ︷︷ ︸
Epistemic Uncertainty

▶ Aleatoric uncertainty is the expected variance of the
predictions, while epistemic uncertainty is the variance of
the expected predictions

▶ This decomposition is particularly useful in regression problems
where understanding the contribution of noise versus model
uncertainty to the total predictive uncertainty is important.

29 / 64



Types of uncertainty continued: Uncertainty
decomposition 2

H(y | x ,D) = Ep(θ|D)[H(y | θ, x)]︸ ︷︷ ︸
Aleatoric Uncertainty

+ I (y ; θ | D)︸ ︷︷ ︸
Epistemic Uncertainty

Where:

▶ H(y | x ,D) is the predictive entropy.

▶ H(y | θ, x) is the entropy of the predictions given the model
parameters θ.

▶ I (y ; θ | D) is the mutual information between the predictions
and the model parameters given the training data.

This decomposition is particularly useful in classification problems
and when understanding the uncertainty in probabilistic predictions
is important. It provides a more granular view of uncertainty in
terms of information gain and entropy.
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Uncertainty: aleatoric vs epistemic

Source: Kendall et al.: What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision?
NIPS2017
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Summary: Challenges in Bayesian learning

Design:

▶ likelihood and network structure

▶ priors p(θ)

Learning:

▶ posterior p(θ|D) = p(D,θ)
p(D)

▶ evidence p(D) =
∫
p(D|θ)p(θ)dθ

▶ posterior predictive p(y |D) =
∫
p(y |θ)p(θ|D)dθ

▶ model selection = hyperparameters
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Part 2

Part 2: Bayesian Neural Networks
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NNs: Typical Regression/Classification Setting

▶ Data: D = {(xi , yi )}
but xi (e.g., features vector) are not modeled (=are fixed)

▶ Task: predict unknown y for some input x
▶ Model:

▶ parameters vector θ
▶ likelihood p(D|θ) =

∏
i p(yi |θ, xi )
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NNs: likelihood p(D|θ) =
∏

i p(yi |θ, xi)

▶ NN structure (layers, activations etc.) may be hidden inside of
likelihood or we can write explicitly:
p(y |θ, x) = p(y |NN(θNN, x), θlik)
▶ θ = θNN ∪ θlik

▶ where NN is the network
▶ p ”interprets” logits as parameters of a probability distribution

e.g. softmax, normal
▶ θlik are additional likelihood parameters not included in NN

▶ NN(θ, x) = ϕL(θL, ϕL−1(θL−1, . . . , ϕ1(θ1, x)))
▶ where θNN = θ1 ∪ · · · ∪ θL consists of weights and biases in NN
▶ ϕl are layers

e.g. ϕl(weights∪ biases, inputs) = al(weights · inputs + biases)
▶ al are activations
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Example: Homoscedastic Gaussian regression

▶ p(yi |NN(θ, xi ), σ) = N (yi |µi , σ)
▶ µi := NN(xi , θ) = ϕL(θL, ϕL−1(θL−1, . . . , ϕ1(θ1, xi )))

▶ θlik = {σ}
▶ aL = identity (i.e., aL(v) = v)

Note: we look for Ep(yi |NN(θ,xi ),σ)[yi ] = µi , and it is coincidental
that (for Gaussian regression) the NN is returning exactly µi .
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Example: Heteroscedastic Gaussian regression

▶ p(yi |NN(θ, xi )) = N (yi |µi , σi )
▶ [µi , σi ] := NN(xi , θ) = ϕL(θL, ϕL−1(θL−1, . . . , ϕ1(θ1, xi )))

▶ θlik = ∅
▶ aL(v) = concat(v [0 . . . (H/2− 1)], exp(v [H/2 . . .H]) + ϵ)

where exp makes sure σi > 0
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Example: Classification

▶ p(yi |NN(θ, xi )) = Bernoulli(yi |pi )
▶ pi := NN(xi , θ) = ϕL(θL, ϕL−1(θL−1, . . . , ϕ1(θ1, xi )))

▶ θlik = ∅
▶ aL(v) = sigmoid(v)

sigmoid makes sure pi ∈ [0, 1]
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MLE (likelihood=Bernoulli) for a NN Classifier
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Point-wise (MLE/MAP) solution

▶ Parameters: find one value θ̂,
e.g., by minimizing loss = maximizing likelihood (MLE) /
maximum a posteriori (MAP):

θ̂ = argminθL(D, θ)

▶ Predictions:
p(y |x ,D)︸ ︷︷ ︸

predictive distribution

= p(y |θ̂, x)︸ ︷︷ ︸
likelihood
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Bayesian (distributional) solution

▶ Parameters: find a posterior p(θ|D)
▶ we get uncertainty about θ (e.g., variance in addition to the

mean)

▶ Predictions: Bayesian Model Averaging (average of all
possible models weighted by the posterior):

p(y |x ,D)︸ ︷︷ ︸
posterior predictive

=

∫
p(y |θ, x)︸ ︷︷ ︸
likelihood

p(θ|D)︸ ︷︷ ︸
posterior

dθ
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Classification: MLE vs Bayesian (LLLA) solution

Based on: https://github.com/wiseodd/last_layer_laplace
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Classification: Bayesian (LLLA) solution for varying data
sizes

Based on: https://github.com/wiseodd/last_layer_laplace
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Example: (Basic Feed-Forward) Bayesian Neural Network

Objective: find the posterior distribution p(θ|D) = p(D|θ)·p(θ)
p(D)
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Posteriors for complex Bayesian models

- MCMC methods ’kind of’ work, but are slow
- Distributional approaches are fast but require tricks to make
them work
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Distributional approximations

▶ Laplace approximation: find N (θ|µ,Σ) ≈ p(θ|D).
▶ Variational:

▶ Postulate q(θ|λ) ≈ p(θ|D)

▶ Minimize divergence between the approximation and the true
posterior:

▶ EP: q(θ|λ) = argminqKL(p|q)
▶ VI: q(θ|λ) = argminqKL(q|p)
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Approximate inference: variational objective - ELBO

KL(q|p) =
∫

q(θ|λ) log
(
q(θ|λ)
p(θ|D)

)
dθ =

∫
q(θ|λ) log

(
q(θ|λ)p(D)
p(θ|D)p(D)

)
dθ

=

∫
q(θ|λ) log

(
q(θ|λ)
p(θ,D)

)
dθ + log p(D)

= −
∫

q(θ|λ) [log (p(D|θ)p(θ))− log q(θ|λ)] dθ︸ ︷︷ ︸
ELBO

+ log p(D)

= −

Eq log (p(D|θ)p(θ))−Eq log q(θ|λ)︸ ︷︷ ︸
H(q)


︸ ︷︷ ︸

ELBO

+ log p(D)

Since log p(D) = const: argminqKL(q|p) = argmaxqELBO
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ELBO: 3 forms

▶ with entropy

L = Eq[log (p(D|θ)p(θ))] + H(q)

▶ under one integral:

L = Eq[log (p(D|θ)p(θ))− log q(θ|λ)]
= Eq[log p(D|θ) + log p(θ)− log q(θ|λ)]

▶ with KL (like in VAEs):

L = Eq[log p(D|θ)]− KL(q(θ|λ)|p(θ))

note KL here is between q and the prior and it’s a different KL
than the one between q and the true posterior we started from
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Practical implementation: minibatches

ELBO =

∫
q(θ|λ) log (p(D|θ)) dθ + KL(q|p) independence

=

∫
q(θ|λ) log

 ∏
(x ,y)∈D

p(y |θ, x)

 dθ + KL(q|p)

=
∑

(x ,y)∈D

∫
q(θ|λ) log (p(y |θ, x)) dθ + KL(q|p) minibatches

≈ |D|
|D′|

∑
(x ,y)∈D′

∫
q(θ|λ) log (p(y |θ, x)) dθ + KL(q|p)

for a minibatch D′ ⊂ D
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Practical implementation: Monte-Carlo of Integrals

ELBO =

∫
q(θ|λ) [log (p(D|θ)p(θ))− log q(θ|λ)] dθ

≈ 1

S

∑
θ∼q(θ|λ)

log (p(D|θ)p(θ))− log q(θ|λ)
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Gradient-based optimization

▶ Objective: argmaxqELBO
▶ Gradient-based optimization:

▶ variational: q(θ|λ)next := q(θ|λ) + η∇qELBO
▶ implementation: λnext := λ+ η∇λELBO

▶ reparameterization allows us to push gradient through the
sampling operation (θ ∼ q(θ|λ)):

▶ ∇λ

∑
θ∼q(θ|λ) g(θ) =

∑
ϵ∼q0(ϵ)

∇λg(θ(ϵ, λ))
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Reparameterization for 1D normal distribution

Sample from a distribution without any parameters to generate
samples from a target distribution by a deterministic
transformation:

▶ let’s consider q(θ|λ) ≡ N (θ|µ, σ) (where λ ≡ {µ, σ}) [target]
▶ reparameterize θ(ϵ, µ, σ) = µ+ σϵ, ϵ ∼ N (ϵ|0, I ) [sampling]

(note: N(ϵ|0, I ) has all parameters fixed)

▶ then θ(ϵ, µ, σ) ∼ N(θ|µ, σ)
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Reparameterized gradient of ELBO

∇λELBO ≈ ∇λ

 1

S

∑
θ∼q(θ|λ)

log p(D, θ)− log q(θ|λ)

 reparameterize

=∇λ

 1

S

∑
ϵ∼q0(ϵ)

log p(D, θ(ϵ, λ))− log q(θ(ϵ, λ)|λ)


=
1

S

∑
ϵ∼q0(ϵ)

∇λ [log p(D, θ(ϵ, λ))− log q(θ(ϵ, λ)|λ)]

log p(D, θ(ϵ, λ))− log q(θ(ϵ, λ)|λ) is a deterministic function of
ϵ, λ,D
−→ gradient of it can be computed either analytically or numerically
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Summary: variational inference for practitioners

We look for q(θ|λ) ≈ p(θ|D):
1. Choose model likelihood p(D|θ) and prior p(θ)

2. Assume q(θ|λ) in some family parametrized by λ;
often: q(θ|λ) ≡ N(µ, diag(σ)) so λ ≡ {µ} ∪ {σ}

3. Optimize with gradients: λnext := λ+ η∇λL;
usually L ≡ ELBO

4. Use q(θ|λ) in place of p(θ|D) wherever needed
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Problems

▶ additional assumptions needed to learn for high-dimensional
posteriors,
e.g., factorized (mean-field) posteriors q(θ|λ) =

∏
d q(θd |λ)

▶ mode collapsing and underestimating variance for KL(q|p)

D
en

si
ty

Tcrit

qVI

qEP

qopt
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What need to do better for BNNs

▶ Learn full posterior only for last-layer methods

▶ Define priors in functions space

▶ . . .
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Last layer VI

Idea: Bayesian learning just for the last layer. MAP for the rest.
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Last layer VI: Variational Bayesian Last Layers (ICLR 2024)

▶ Likelihood: p(y |θ, x) =
p(y |ϕL(θL, ϕL−1(ωL−1, . . . , ϕ1(ω1, x)))) = p(y |NN(θ, ω, x))
where θ = θL, ω = {ω1, . . . , ωL−1}
ω are weights and biases learned point-wise

▶ Prior: p(θL), p(ω) (only for MAP regularization)

▶ Goal: find p(θ|D) and ω̂.

▶ L = Eq(θ|λ) [log p(D|θ, ω)p(θ)] + H(q) + p(ω)

▶ Solve for: λ̂, ω̂ = argmaxλ,ωL
▶ Trick (collapsed VI): for fixed ω and carefully selected q(θ|λ),

the expectation in ELBO has a close-form solution (no
sampling is needed anymore = lower variance):
Eq(θ|λ) [log p(D|θ, ω)p(θ)] = P(D, ω, λ)

▶ λ̂, ŵ = argmaxλ,wP(D, ω, λ) + H(q) + p(ω),
where H(q) is also a function of only λ
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Last layer VI: Variational Bayesian Last Layers (ICLR 2024)

Regression example:

▶ Let’s denote ϕ = ϕL−1(ωL−1, . . . ϕ1(ω1, x))))

▶ Normal likelihood N(y |θTϕ, σ2), aL = identity

▶ Factorized prior N(θ|0, I )
▶ Normal posterior assumption: q(θ|µ,Σ) = N(θ|µ,Σ), where
λ = {µ,Σ}.
▶ Note: Σ may be full-rank.

▶ We may learn (point-wise) the likelihood hyperparameter σ as
well: ω = {ω1, . . . , ωL−1} ∪ {σ}∫

log
(
N(y |θTϕ, σ2)N(θ|0, I )

)
N(θ|µ,Σ)dθ = . . .

= P(D, {ψ, σ}, {µ,Σ})
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Priors

▶ θ = θL ∪ . . . θ1 ∪ θlik

▶ Factorized priors p(θ) =
∏

d p(θd)
Note: lower vs upper indices

▶ often p(θd) = N(θd |0, 1)
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Function-space view on BNNs: Matching priors

1. Function view on NNs (whiteboard 1D example)
▶ Prior predictive distribution: p(y |x) =

∫
p(y |x , θ)p(θ|ζ)dθ

where ζ denotes hyperparameters of the priors
▶ Let pNN(f |ζ) be functions induced by NN

2. Let pT (f ) denote target distribution on functions

3. Let’s use Wasserstein loss between function samples
fNN ∼ pNN(f |ζ) and fT ∼ pT (f )

4. Matching the target: gradient-based optimization on
index-set χ:

ζ̂ = argminζL (pNN(f |ζ), pT (f )) |χ
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Appendix
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Disclaimer on notation

Continuous r.v.-s ←→ Discrete r.v.-s:

▶ integral
∫
←→ sum

∑
▶ probability density p ←→ probability mass P

We may abuse notation by writing e.g. r .v . ∼ p(r .v .|params)
(instead of r .v . ∼ p(params)) to explicitly inform about r .v .

Loss: L(D, θ) = negative log-likelihood: −L(D, θ)

Distributions: q ≡ q(θ|λ), p ≡ p(θ|D)
e.g. KL(q|p) ≡ KL(q(θ|λ)|p(θ|D)) =

∫
q(θ|λ) log q(θ|λ)

p(θ|D)dθ ,

H(q) ≡ H(q(θ|λ)) = −
∫
q(θ|λ) log q(θ|λ)dθ
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Some useful identities

▶ log eA = A

▶ log(A · B) = log(A) + log(B)

▶ log(
∏

i Ai ) =
∑

i log(Ai )

▶ log(A/B) = log(A)− log(B)

▶
∫
g(B)p(A)dA = g(B)
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