
Introduction to Bayesian methods
and Bayesian Neural Networks

Tomasz Kuśmierczyk
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Coin tossing example

Task: for a biased (=unfair) coin, find the probability of heads θ :

1. Observations D = {H,H,H,T ,H,H,T ,H,H,H,H,T}
2. Observations D = {H,H,H,T ,H,H,T ,H}
3. Observations D = {H,H,H,T}
4. Observations D = {T ,T}
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Maximum Likelihood Estimate

1. Specify model.

2. Select loss.

3. Find parameters minimizing loss (=maximizing data
likelihood).

Coin tossing example:

▶ Parameter: θ

▶ Option 1: MSE loss: L(D, θ) =
∑

y∈D(y − θ)2

▶ Option 2: Bernoulli negative log-likelihood:
L(D, θ) = −

∑
y∈D log p(y |θ) where p = Bernoulli pmf

▶ Solution: θ̂ = argminθL(D, θ)
=⇒ θ̂ = 0.75 for 1.,2.,3.
=⇒ θ̂ = 0.0 for 4.
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Few problems with MLE

▶ Overfitting with Small Sample Size: If we toss the coin a
very small number of times (e.g., once or twice), MLE can
give misleading results.

▶ Bias in Estimation with Limited Data: MLE is highly
sensitive to the sample size. With few observations, the
estimation can be heavily biased.

▶ Zero Probability Issue: If an outcome is not observed in the
sample, MLE assigns it a probability of zero.

▶ Doesn’t Account for Prior Knowledge: MLE only uses the
observed data and does not incorporate any prior knowledge
or beliefs.

▶ Variance in Estimates: The variance of the MLE estimate is
high for small sample sizes, leading to unstable predictions.

▶ Sensitivity to Outliers: Outliers or rare events can
disproportionately affect the MLE.
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MLE solution p(y |x ,D) for a NN trained on 1k data points

Based on: https://github.com/wiseodd/last_layer_laplace
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MLE solution p(y |x ,D) for a NN trained on 4 data points

Based on: https://github.com/wiseodd/last_layer_laplace
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Goal

We want ML models that:

▶ are uncertain about unseen things

▶ become more certain with more data

7 / 43



MLE vs Bayes: Latent variable inference

▶ point-wise - find one value θ̂,
e.g., by minimizing loss = maximizing likelihood (MLE) /

maximum a posteriori (MAP): (((((((((((hhhhhhhhhhhθ̂ = argminθL(D, θ)
▶ distributional - find a posterior p(θ|D)

▶ we get uncertainty about θ
(e.g., variance in addition to the mean)
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Bayes Theorem

Everything follows from two basic rules:

▶ Sum rule: p(A) =
∑

b p(A,B = b)

▶ Product rule: p(A,B) = p(B|A) · p(A) = p(A|B) · p(B)

Bayes’ Theorem:

p(A|B) = p(B|A) · p(A)
p(B)

=
p(B|A) · p(A)∑
a p(B,A = a)

=
p(B|A) · p(A)∑

a p(B|A = a)p(A = a)
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Basic Concepts of Bayesian Methods

p(A|B) = p(B|A) · p(A)
p(B)

Let’s rename A −→ θ, B −→ D:

p(θ|D) = p(D|θ) · p(θ)
p(D)

▶ Prior p(θ): Initial belief on parameters before seeing data

▶ Likelihood p(D|θ): Probability of data given parameters of
the model

▶ Posterior p(θ|D): Updated belief after seeing (more) data
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Bayes Theorem Example: Determining Stroke Type Based
on MRI Scan Intensity

▶ The MRI scan of a patient shows an intensity value of
y = 140 units (D = {140}).

▶ Ischemic Stroke (Ischemic): In an ischemic stroke, affected
brain areas may show lower signal intensity due to reduced
blood flow. Assume these intensity values follow a normal
distribution with a mean of 100 units and a standard deviation
of 20:
y ∼ N (100, 202)|θ=I .

▶ Hemorrhagic Stroke (Hemorrhagic): In a hemorrhagic stroke,
affected areas show higher signal intensity due to bleeding.
Assume these intensity values follow a normal distribution
with a mean of 180 units and a standard deviation of:
y ∼ N (180, 302)|θ=H .
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Bayes Theorem Example: likelihood

p(y |θ) = N (y |100, 202) · I[θ = I ] +N (y |180, 302) · I[θ = H]
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Bayes Theorem Example: priors

Prior Beliefs about Parameters:

▶ Ischemic Stroke (Ischemic): This is the most common type of
stroke, accounting for about 85% of all strokes (prior
probability = 0.85):
p(θ = I ) = 0.85

▶ Hemorrhagic Stroke (Hemorrhagic): Less common, these
strokes account for the remaining 15% of stroke cases (prior
probability = 0.15).
p(θ = H) = 0.15
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Bayes Theorem Example: solution

▶ Data: D = {140}
▶ Likelihood: N (y |100, 202)|θ=I , N (y |180, 302)|θ=H

▶ Priors: p(θ = I ) = 0.85, p(θ = H) = 0.15

▶ Computation:
▶ p(D|θ = I ) = N (140|100, 202) = 0.0027
▶ p(D|θ = H) = N (140|180, 302) = 0.0055
▶ p(D) = 0.0027 ∗ 0.85 + 0.15 ∗ 0.0055 =

0.002295 + 0.000825 = 0.00312
▶ p(θ = I |D) = 0.0027 ∗ 0.85/0.00312 = 0.736
▶ p(θ = H|D) = 0.15 ∗ 0.0055/0.00312 = 0.264
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Understanding priors: posteriors as priors

p(θ|D0) =
p(D0|θ) · p(θ)

p(D0)

p(θ|D1 ∪ D0) =
p(D1 ∪ D0|θ) · p(θ)

p(D1 ∪ D0)
=

=
p(D1|θ)p(D0|θ)p(θ)

p(D1)p(D0)
=

p(D1|θ)p(θ|D0)

p(D1)

p(θ|D1 ∪ D0) ←− p(θ|D0) ←− p(θ) = p(θ|∅)
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Bayes Theorem Example: repeated measurement

Previous solution for D0 = {140}:
▶ p(θ = I |D) = 0.0027 ∗ 0.85/0.00312 = 0.736

▶ p(θ = H|D) = 0.15 ∗ 0.0055/0.00312 = 0.264

After additional measurement y = 160: D1 = {160};
D = D0 ∪ D1 = {140, 160}:
▶ p(D1|θ = I ) = N (160|100, 202) = 0.0002

▶ p(D1|θ = H) = N (160|180, 302) = 0.0106

▶ p(D) = 0.0002 ∗ 0.736 + 0.0106 ∗ 0.264 = 0.0029456

▶ p(θ = I |D) = 0.0002 ∗ 0.736/0.0029456 = 0.05

▶ p(θ = H|D) = 0.0106 ∗ 0.264/0.0029456 = 0.95
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Conjugate priors

▶ Problem: how to find p(θ|D)?
▶ For some pairs of prior+likelihood, the posterior takes the

same form as prior
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Conjugate priors: whiteboard example

Back to the coin-tossing example:
Let’s consider Beta-Bernoulli model:

▶ prior p(θ) = Beta(θ|α, β) = θα−1·(1−θ)β−1

B(α,β)

▶ likelihood
p(D|θ) =

∏
y∈D Bernoulli(y |θ) =

∏
y

(
θy · (1− θ)(1−y)

)
▶ example data: D = {T ,T}

Find p(θ|D):
1. Let’s start with p(θ|D) ∝ p(D|θ)p(θ)
2. . . .

3. https://homepage.divms.uiowa.edu/~mbognar/
applets/beta.html

4. Importance of priors: α = β = 1 vs α = β = 10
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Conjugate priors

Conjugate priors:
https://en.wikipedia.org/wiki/Conjugate_prior
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Finding latent variable vs predictive distribution

Two tasks:

▶ find latent variables θ (e.g. clusters in data) i.e. find p(θ|D)
▶ make predictions for a new y (often based on features x) i.e.

find p(y |D, x)
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NNs: Typical Regression/Classification Setting

▶ Data: D = {(xi , yi )}
but xi (e.g., features vector) are not modeled (=are fixed)

▶ Task: predict unknown y for some input x
▶ Model:

▶ parameters vector: θ
▶ likelihood i.i.d.: p(D|θ) =

∏
i p(yi |θ, xi )
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NNs: likelihood p(D|θ) =
∏

i p(yi |θ, xi)

▶ NN structure (layers, activations etc.) may be hidden inside of
likelihood or we can write explicitly:
p(y |θ, x) = p(y |NN(θNN, x), θlik)
▶ θ = θNN ∪ θlik

▶ where NN is the network
▶ p ”interprets” logits as parameters of a probability distribution

e.g. softmax, sigmoid, normal
▶ θlik are additional likelihood parameters not included in NN

▶ NN(θ, x) = ϕL(θL, ϕL−1(θL−1, . . . , ϕ1(θ1, x)))
▶ where θNN = θ1 ∪ · · · ∪ θL consists of weights and biases in NN
▶ ϕl are layers

e.g. ϕl(weights∪ biases, inputs) = al(weights · inputs + biases)
▶ al are activations
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Point-wise (MLE/MAP) solution

▶ Parameters: find one value θ̂,
e.g., by minimizing loss = maximizing likelihood (MLE) /
maximum a posteriori (MAP):

θ̂ = argminθL(D, θ)

▶ Predictions:
p(y |x ,D)︸ ︷︷ ︸

predictive distribution

= p(y |θ̂, x)︸ ︷︷ ︸
likelihood

23 / 43



Example: Homoscedastic Gaussian regression

▶ p(yi |NN(θ, xi ), σ) = N (yi |µi , σ)

▶ µi := NN(xi , θ) = ϕL(θL, ϕL−1(θL−1, . . . , ϕ1(θ1, xi )))

▶ θlik = {σ}
▶ aL = identity (i.e., aL(v) = v)

Note: we look for Ep(yi |NN(θ,xi ),σ)[yi ] = µi , and it is coincidental
that (for Gaussian regression) the NN is returning exactly µi .
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1D linear regression: NN(x , θ) = θ · x and σ = 1
(i.e. y = θ · x + ϵ, ϵ ∼ N (0, 1))

▶ point-wise - find θ̂,
e.g., maximizing likelihood (MLE) or maximum a posteriori
(MAP)

x

y

1
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Bayesian (distributional) solution

▶ Parameters: find a posterior p(θ|D)
▶ we get uncertainty about θ (e.g., variance in addition to mean)

▶ Predictions: Bayesian Model Averaging (average of all
possible models weighted by the posterior):

p(y |x ,D)︸ ︷︷ ︸
posterior predictive

=

∫
p(y |θ, x)︸ ︷︷ ︸
likelihood

p(θ|D)︸ ︷︷ ︸
posterior

dθ

▶ ultimate goal: find posterior predictive p(y |x ,D)
▶ intermediate goal: find posterior p(θ|D) ∝ p(D|θ)p(θ)
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Bayesian solution: Making predictions with MC

▶ Bayesian Model Averaging (average of all possible models
weighted by the posterior):

p(y |x ,D)︸ ︷︷ ︸
posterior predictive

=

∫
p(y |θ, x)︸ ︷︷ ︸
likelihood

p(θ|D)︸ ︷︷ ︸
posterior

dθ

Statistics of p(y |x ,D) can be obtained using the Monte-Carlo
estimates by two-step sampling:

▶ sample θ ∼ p(θ|D)
▶ for the fixed θ, sample y ∼ p(y |θ, x)

For example, Ep(y |x ,D)[y ] ≈ 1
Sθ

1
Sy

∑
θ∼p(θ|D)

∑
y∼p(y |θ,x) y
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1D linear regression: NN(x , θ) = θ · x and σ = 1
(i.e. y = θ · x + ϵ, ϵ ∼ N (0, 1))

▶ point-wise - find θ̂,
e.g., maximizing likelihood (MLE) or maximum a posteriori
(MAP)

▶ distributional - find a posterior p(θ|D)

x

y

1
x

y
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1D non-linear regression example

http://mlg.eng.cam.ac.uk/yarin/blog_2248.html#demo

Figure: Multiple draws of a regression model.
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Example: Classification

▶ p(yi |NN(θ, xi )) = Bernoulli(yi |pi )
▶ pi := NN(xi , θ) = ϕL(θL, ϕL−1(θL−1, . . . , ϕ1(θ1, xi )))

▶ θlik = ∅
▶ aL(v) = sigmoid(v)

sigmoid makes sure pi ∈ [0, 1]
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MLE (likelihood=Bernoulli) for a NN Classifier
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MLE solution p(y |x ,D) for 4 data points

Based on: https://github.com/wiseodd/last_layer_laplace
accompanying: Kristiadi et al. ”Being bayesian, even just a bit, fixes overconfidence in relu networks.” ICML 2020.
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Classification: MLE vs Bayesian (LLLA) solution

Based on: https://github.com/wiseodd/last_layer_laplace
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Classification: Bayesian (LLLA) solution for varying data
sizes

Based on: https://github.com/wiseodd/last_layer_laplace
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Challenges in Bayesian learning

Design:

▶ likelihood and network structure

▶ priors p(θ)

Learning:

▶ posterior p(θ|D) = p(D,θ)
p(D)

▶ evidence p(D) =
∫
p(D|θ)p(θ)dθ

▶ posterior predictive p(y |D) =
∫
p(y |θ)p(θ|D)dθ

▶ model selection = hyperparameters
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Priors

▶ θ = θL ∪ . . . θ1

▶ Factorized priors p(θ) =
∏

d p(θd)
Note: lower vs upper indices

▶ often p(θd) = N(θd |0, 1)
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(Basic Feed-Forward) Bayesian Neural Network

Objective: find the posterior distribution p(θ|D) = p(D|θ)·p(θ)
p(D)
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Finding posterior: Variational Inference

▶ Postulate q(θ|λ) ≈ p(θ|D)

▶ Minimize KL between the approximation and the true
posterior:
VI: q(θ|λ) = argminqKL(q|p)
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Approximate inference: variational objective - ELBO

KL(q|p) =
∫

q(θ|λ) log
(
q(θ|λ)
p(θ|D)

)
dθ =

∫
q(θ|λ) log

(
q(θ|λ)p(D)
p(θ|D)p(D)

)
dθ

=

∫
q(θ|λ) log

(
q(θ|λ)
p(θ,D)

)
dθ + log p(D)

= −
∫

q(θ|λ) [log (p(D|θ)p(θ))− log q(θ|λ)] dθ︸ ︷︷ ︸
ELBO

+ log p(D)

= −

Eq log (p(D|θ)p(θ))−Eq log q(θ|λ)︸ ︷︷ ︸
H(q)


︸ ︷︷ ︸

ELBO

+ log p(D)

Since log p(D) = const: argminqKL(q|p) = argmaxqELBO
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Summary: variational inference for practitioners

We look for q(θ|λ) ≈ p(θ|D):
1. Choose model: likelihood p(D|θ) and prior p(θ)

2. Assume q(θ|λ) in some family parametrized by λ;
often: q(θ|λ) ≡ N(µ, diag(σ)) so λ ≡ {µ} ∪ {σ}

3. Optimize with gradients: λnext := λ+ η∇λL;
usually L ≡ ELBO

4. Use q(θ|λ) in place of p(θ|D) wherever needed
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Appendix
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Disclaimer on notation

Continuous r.v.-s ←→ Discrete r.v.-s:

▶ integral
∫
←→ sum

∑
▶ probability density p ←→ probability mass P

We may abuse notation by writing e.g. r .v . ∼ p(r .v .|params)
(instead of r .v . ∼ p(params)) to explicitly inform about r .v .

Loss: L(D, θ) = negative log-likelihood: −L(D, θ)

Distributions: q ≡ q(θ|λ), p ≡ p(θ|D)
e.g. KL(q|p) ≡ KL(q(θ|λ)|p(θ|D)) =

∫
q(θ|λ) log q(θ|λ)

p(θ|D)dθ ,

H(q) ≡ H(q(θ|λ)) = −
∫
q(θ|λ) log q(θ|λ)dθ
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Some useful identities

▶ log eA = A

▶ log(A · B) = log(A) + log(B)

▶ log(
∏

i Ai ) =
∑

i log(Ai )

▶ log(A/B) = log(A)− log(B)

▶
∫
g(B)p(A)dA = g(B)
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